Open Nav

语音自动识别中分割时间上下文的深度学习

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

语音自动识别中分割时间上下文的深度学习(中文7000字,英文PDF)
摘要
本篇论文介绍了语音识别最近的重要进展,即用深度神经结构取代基础的混合GMM/HMM方法。这些模型被证实能显著地提高识别性能,这归功于其捕获数据的潜在结构的能力。然而,它们仍然特别复杂,因为一个给定音素的整体时间的上下文是通过单一一个模型来学习的,因此该模型必须具有大量的可训练权重。本文提出了另一种解决方案,将整体时间的上下文分割成块,每个块都用一个单独分离的深度模型学习。我们证明了,与传统的深度学习方法相比,这种方法显著减少了参数的数量,并且在TIMIT数据集上得到了更好的结果,在最先进的技术方法中名列前茅(只有20.20%的音素错误率)。我们还表明,我们的方法能够吸收理解不同性质的数据,包括范围从宽到窄的带宽信号。
索引词:语音识别,神经网络,深度学习,分割时间上下文

[资料来源:http://doc163.com]

 

[资料来源:https://www.doc163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4