无监督代表学习深卷积的生成对抗网络
资料介绍:
无监督代表学习深卷积的生成对抗网络(中文7000字,英文PDF)
摘要
近年来,卷积网络的监督学习已经在计算机视觉应用中被广泛采用。相对而言,无监督使用CNN学习受到的关注较少。在这项工作中,我们希望能有所帮助弥合CNN在监督学习和非监督学习中的成功。我们引入一类称为深卷积生成的CNN。具有一定架构限制的对抗性网络(dcgan),以及证明他们是无监督学习的有力候选人。训练在各种图像数据集上,我们展示了令人信服的证据,证明我们的深卷积对手对从对象部分到生成器和鉴别器中的场景。此外,我们还使用新任务的特征-证明其作为一般图像表示的适用性。
[来源:http://www.doc163.com]
[资料来源:http://doc163.com]