Open Nav

用小波作为输入支持向量机和神经网络的磁共振脑图像分类

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

用小波作为输入支持向量机和神经网络的磁共振脑图像分类(中文6000字,英文PDF)
摘要
在本文中,我们提出了一种新的方法,使用小波作为神经网络自组织映射的输入和支持向量机的人脑磁共振(MR)图像的分类。所提出的方法将MR脑图像分类为正常或异常。我们使用52个MR脑图像的数据集测试了所提出的方法。使用神经网络自组织图(SOM)和98%来自支持向量机,实现了超过94%的良好分类百分比。我们观察到,与基于自组织映射的方法相比,支持向量机分类器的分类率很高。
#2006 Elsevier Ltd.保留所有权利。
关键词:磁共振成像(MRI);离散小波变换(DWT);人工神经网络(ANN);自组织地图(SOM);支持向量机(SVM) [资料来源:www.doc163.com]

  [版权所有:http://DOC163.com]

用小波作为输入支持向量机和神经网络的磁共振脑图像分类

 

[版权所有:http://DOC163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2025 苏ICP备2021029856号-4