Open Nav

基于支持向量机的手写数字识别研究

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

基于支持向量机的手写数字识别研究(中文5000字,英文PDF)
摘要
本文提出了一种基于SVC的手写数字识别机器学习模型。并且在本文中还分析了样本数量、核函数参数、惩罚系数等等对预测模型的影响。结果表明,训练样本对模型有着十分显著的影响,这其中包含着一个可以接受的训练数值。不同的核函数对模型的精度会产生不同的影响。在这其中,径向函数是最佳的识别模型。随着模型中C值的不断增加,识别率不断提高;而随着伽马值的增加,识别率呈现出一种先上升后下降的过程,其中拐点处称为伽马的阈值。

[资料来源:http://doc163.com]

 

[资料来源:Doc163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4