Open Nav

基于感知损失函数的实时风格转换和超分辨率重建

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

基于感知损失函数的实时风格转换和超分辨率重建(中文9000字,英文PDF)
摘要:我们考虑的图像转换的问题,即将一个输入图像变换成一个输出图像。最近热门的图像转换的方法通常是训练前馈卷积神经网络,将输出图像与原本图像的逐像素差距作为损失函数。并行的工作表明,高质量的图像可以通过用预训练好的网络提取高级特征、定义并优化感知损失函数来产生。我们组合了一下这两种方法各自的优势,提出采用感知损失函数训练前馈网络进行图像转换的任务。本文给出了图像风格化的结果,训练一个前馈网络去解决实时优化问题(Gatys等人提出的),和基于有优化的方法对比,我们的网络产生质量相当的结果,却能做到三个数量级的提速。我们还实验了单图的超分辨率重建,同样采用感知损失函数来代替求逐像素差距的损失函数。 [资料来源:http://www.doc163.com]

  [版权所有:http://DOC163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4