Open Nav

基于深度卷积神经网络的交通标志识别方法

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

基于深度卷积神经网络的交通标志识别方法(中文5000字,英文PDF)
  交通标志识别(TSR)是自动驾驶系统的重要组成部分。为TSR系统设计一个高性能的分类器是一个非常具有挑战性的任务。本文提出了一种基于深度卷积神经网络的TSR系统设计方法。为了增强网络的表达能力,设计了一种将网络中的网络和剩余连接相结合的新结构(下称块层)。我们的网络有10个带参数的层(块层视为单层):前7个是交替的体积层和块层,其余3个是完全连接的层。我们在德国交通标志识别基准(GTSRB)数据集上训练我们的TSR网络。为了减少过度拟合,我们对训练图像进行数据增强,并采用正则化方法“dropout”。我们在网络中使用的激活函数采用了尺度指数线性单元(SELUs),它可以诱导自归一化性质。为了加快训练速度,我们使用一个高效的GPU来加速卷积运算。在GTSRB的测试数据集上,我们达到了99.67%的准确率,超过了目前最先进的结果。

[资料来源:http://doc163.com]

 

[资料来源:http://doc163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4