更快的R-CNN:通过区域提案网络实现实时对象检测
资料介绍:
更快的R-CNN:通过区域提案网络实现实时对象检测(中文16000字,英文PDF)
摘要 - 最先进的对象检测网络取决于区域提案算法来假设对象位置。 像SPPnet [1]和Fast R-CNN [2]这样的进步减少了这些检测网络的运行时间,使区域提案计算成为瓶颈。 在这项工作中,我们引入了一个与检测网络共享全图像卷积特征的区域提案网络(RPN),从而实现了几乎无成本的区域提案。 RPN是一个完全卷积网络,可以同时预测每个位置的对象边界和对象分数。 RPN是端对端进行培训,以生成高质量的区域提案,由快速R-CNN用于检测。 我们通过共享其卷积特征进一步将RPN和Fast R-CNN合并到一个网络中 - 使用最近流行的神经网络术语“注意”机制,RPN组件告诉统一网络在哪里看。 对于非常深的VGG-16模型[3],我们的检测系统在GPU上具有5fps(包括所有步骤)的帧速率,同时在2012年PASCAL VOC 2007上实现了最先进的对象检测精度, MS COCO数据集,每个图像只有300个提案。 在ILSVRC和COCO 2015比赛中,更快的R-CNN和RPN是几个赛道的第一名获奖作品的基础。 守则已公开提供。
索引术语 - 对象检测,区域提案,卷积神经网络。 [资料来源:http://Doc163.com]
[来源:http://Doc163.com]