Open Nav

非线性处理:混沌系统的预测和无线通信节能

以下是资料介绍,如需要完整的请充值下载.
1.无需注册登录,支付后按照提示操作即可获取该资料.
2.资料以网页介绍的为准,下载后不会有水印.仅供学习参考之用.
   帮助中心
资料介绍:

非线性处理:混沌系统的预测和无线通信节能(中文5000字,英文PDF)
摘要:本文提出了对非线性系统的一种学习方法——回声状态神经网络(ESNs)。ESNs是一种新型的递归神经网络,它最近被提出的在生物大脑方面独立作为一个学习方法。这种学习方法计算效率高,易于使用。在预测混沌时间序列的基准任务方面,比以前的技术在精度方面提高了2400倍。它的工程应用潜力是通过通信信道均衡来说明,其中信号误码率提高了两个数量级。
    在科学和工程领域中大量的存在非线性动力系统。如果想要来模拟、预测、分类或控制这样一个系统,则需要一个可执行的系统模型。但是,得到分析模型往往是不可行的。在这种情况下,就不得不采用黑箱模型,从而忽视了内部的物理机制,而只是重现了表面上可观察的目标的输入输出行为。
    如果目标系统是线性的,高效的黑箱建模方法是可行的。然而大多数技术系统如果操作在更高的操作点(即接近饱和)会变成非线性的。尽管这种设计会更便宜和更节能,但它仍然没有被使用,因为非线性的结果不能被利用。许多生物力学系统使用全动态范围(达到饱和),从而成为轻量化和节能,却彻底的非线性失真了。 [来源:http://www.doc163.com]

  [资料来源:http://Doc163.com]

  • 关于资料
    提供的资料属本站所有,真实可靠,确保下载的内容与网页资料介绍一致.
  • 如何下载
    提供下载链接或发送至您的邮箱,资料可重复发送,若未收到请联系客服.
  • 疑难帮助
    下载后提供一定的帮助,收到资料后若有疑难问题,可联系客服提供帮助.
  • 关于服务
    确保下载的资料和介绍一致,如核实与资料介绍不符,可申请售后.
  • 资料仅供参考和学习交流之用,请勿做其他非法用途,转载必究,如有侵犯您的权利或有损您的利益,请联系本站,经查实我们会立即进行修正! 版权所有,严禁转载
    doc163.com Copyright © 2012-2024 苏ICP备2021029856号-4